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NOTICE

Under the mysterious title Cosmophysics – it had to have it a name – hide only a few
simple and commonsensical ideas that once all glued together seem to form, in my opinion, a
coherent mix. In a strictly Newtonian frame of thought these ideas will allow me to rederive,
using a classical method, the results of special relativity with the exception of the constancy
postulate and the universality of the speed of light, two ideas I am challenging.

I am submitting these ideas to the scientific world, and my ears are wide open to any
suggestions and criticisms that will arise.
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INTRODUCTION

Let us will start with cosmology and proceed with a standard Newtonian approach
towards a new kind of physics that describes the physical universe in the best possible way.

The term "cosmophysics" is best suited for my objective: to intimately link cosmology
to classical physics.

The paradox is obvious since without physics there is no cosmology. The basic
physics needed to establish the cosmology proposed here, is standard and agrees with the
results established in the end of the 19th century, namingly Maxwell's theory of
electromagnetism and the well-known Michelson experiments. These experiments, in my
opinion, do not "prove" the universality of the speed of light c, one of the "hypothesizes" of
special relativity; they simply demonstrate that the speed of light is invariant to an observer in
an earth-based laboratory. As far as I know, the direct measure of the speed of light was done
only on Earth or in an area very close to it on the cosmic scale; nothing proves that is has the
same value in another area of the universe.

My article breaks down into three parts:

- a simple cosmological study in Lagrangian coordinates that will allow us to bring forth an
analogy between the speed of sound and the speed of light. Starting from the hypothesis of
the big bang we will derive solutions to the hydrodynamic equations, in particular those
corresponding to a uniform expansion where a Galilean referential can be defined in any
point of the universe.

- an in-depth study of the mechanics of the material point, more complex than Newton's but
still very general since it doesn't depend on the universe considered.

- finally the introduction of an intermediate transformation, somewhere in between
Galileo's and Lorentz's, that agrees with Maxwell's equations for galilean referentials
(where electric "charges" move with uniform speed) in perfect coherence with the
previously established mechanical models: the physical existence of universal time and a
transformation of lengths that respects the dilatation of the universe.

The main hypothesis fits in naturally in the frame of newtonian cosmology.
The starting hypothesis is a finite universe with a spherical geometry and a uniform mass

density1.
Using the conservation equations of hydrodynamics we will derive a simple model of a

big-bang type expanding universe.
At first sight, there are many possible solutions but I will focus on the uniformly

expanding universe that introduces non-fictitious galilean referentials, meaning that they have
a physical existence.

A new hypothesis where the Newton's constant is proportional to c², to the radius of the
universe R and inversely proportional to the mass of the universe M will enable me to

                                               
1 If course the existence of galaxies and the fact that our galaxy is situated in the Milky Way is not taken into
account here
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considerably simplify the math and give a simple physical interpretation of the mass-energy
equivalence law E # mc² previously established in the theory of special relativity, which we
can derive: the rest mass energy  moc²  represents an essentially gravitational energy.

I will then go on to show the formal proportionality between the speed of sound and
the speed of light, which will us the form of its variation with the Lagrange coordinate; we
must abandon speed of light's universal character as well the commonly accepted hypothesis
of zero pressure in any point of the universe.

This new form of Newtonian cosmology will allow me to define, in agreement with
the physical concepts of the big bang and the singular point:

- a tridimensional absolute Euclidean space
- a universal time t

It is therefore implicitly supposed :
- the existence of the big-bang and the expansion of the Universe
- the possibility to define at the instant of the big bang (time zero) a system of

Cartesian coordinates, centered at the singular point defined by the big bang. At
this time zero, space is void of matter everywhere, but not of ether, except at the
center where the Universe is concentrated.

In rational mechanics or in special relativity, it is supposed that the laws of physics are valid
independently of the considered universe and especially independently of its mass, which is
always considered null (empty universe)

My point of view is different since I suppose that the Universe reacts on these laws
and therefore transforms them.

In this non-empty and anisotropic Euclidean universe I will demonstrate how
Newton's second law transforms. This transformation is independent of the considered
universe, meaning it is independent of its constants (c, R, M).

 The movement of the material point (including the photon) in the absence of force can
be shown as periodical and moves on an ellipse which, in a mobile referential linked to the
expansion, is centered on the center of the universe Ω.

The universe itself behaves as a huge black hole, which allows us to look for a simple
physical interpretation of the "limit speed" character of the speed of light. The longitudinal
Doppler effect is also studied.

While I look for an equivalence between this non-empty anisotropic universe, which is
difficult to work with, and an empty and isotropic universe where the laws of physics easily
apply, I will be brought to suppose a variation of mass with speed to conserve momentum
in the absence of any outside force. The natural physical interpretation of the well-known
relativistic law:

m = 
mo

1 - 
u2

c2

                          or                    m c2 -u2  = mo c

simply expresses the conservation of momentum.
A new metrics is introduced. It conserves time, which remains an absolute universal

time, but it doesn't conserve distances: the dilatation of lengths observed from a privileged
referential that expresses the expansion of the universe.
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As in relativity, force is not conserved, no more than electric and magnetic fields are.
Finally, Maxwell's equations are derived as well as their invariance by change of galilean
referential. This is achieved by allowing the speed of light, electric permittivity and magnetic
permeability to change with the referential.

The principal results of special relativity are rederived by a classical reasoning, in a
universe where time is universal and where the speed of light loses its invariant character.
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CHAPTER I

COSMOLOGY

HYDRODYNAMIC MODEL OF A EUCLIDIAN UNIVERSE –
NEWTON'S CONSTANT AND CARACTERISTIC PROPAGATION SPEED

Foreword In a classical mechanics context, we will be looking for autosemblable
solutions to the conservation equations of hydrodynamics in the spherical geometry of an
expanding universe.

Using a hypothesis on Newton's constant G, I will link the speed of light to the speed
of sound in the supposedly perfect fluid that the universe itself constitutes.

The special case of a uniform expanding universe will allow us to form galilean
referentials where the speed of light at a given point of the universe will be linked to the
Lagrangian coordinate through a simple formula, by analogy with the speed of sound,
therefore losing its universality.

The calculations are treated in Lagrangian coordinates, the mass of the universe is
taken to be a constant, the state equation is the perfect gas equation, Local Thermodynamical
Equilibrium (LTE) is achieved. The existence of a universal time and an absolute referential
linked to the singular big-bang point are implicitly accepted.

Notations:
(polar and axial vectors are noted in bold characters)
r Eulerian coordinate
x Lagrangian coordinate
ρ0 initial density
ρ density
u velocity (Eulerian)
p total pressure
pm matter pressure
pr radiation pressure
U gravitational potential
R universe radius
T supposed black body temperature
S specific entropy
ei specific internal energy
em  specific matter energy
er specific radiation energy
G Newton's constant
M universe mass
t universal time
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Conservation equations in a spherical geometry

(1) 





�r
�x    = 

ρ0
ρ  





x

r
2

conservation of mass* 

ρ 
� u
�t  = -grad p + ρ gradU conservation of impulsion

�e i
�t    = -p

�1/ ρ
�t  + T

�S
�t conservation of energy

 

Hypothesizes: The density  ρ  depends only on t
pm = nkρT (perfect gas)

em = 
nk
γ-1

  T

γ  being the polytropic coefficient, k the Boltzman constant and n the number of gas moles

 pr = 
aT4

3  

er = 
aT4

ρ  a: radiative constant

we have the following relations :



p = pm + pr
ei = em + er

 

Gravitational potential

For a homogeneous plasma sphere (radius R) [ρ(x,t) = ρ(t)] , we have:

 (2)  U = 2ππ G ρρ (R2 - 
r2

3  )  (classical formula)

   r≤R ref./10/

Searching for a particular form of Newton's constant G.

Dimensional analysis tells that we can write G under the following form

G = λλ v2 
l

m 

v is a characteristic velocity
l is a characteristic length
m is a characteristic mass
λ  is a dimensionless proportionality factor*

                                               
* At any given time, the differential relation  4πρr2dr = 4πρox2dx   applies



9

The motion of a test body (mass m) acted upon by the gravitational actions of masses
m1, m2, …,mn  depends on the universe in which this motion takes place, and therefore it
depends a priori on the mass and the geometry of this universe.

This dependence can only express itself in G. From there, one could write:

l = R universe radius m = M universe mass

Universe gravitational potential at a point of spherical coordinate R

U*  = G
M
R  = 





λv2R

M  
M
R  = λ v2

Keeping in mind the mass-energy equivalence of special relativity we can see that U*
must be of the order of c0

2 , c0  being the speed of light at the center of the universe (we will
eventually see that the speed of light depends on r)

The total energy is in fact the sum of the gravitational energy, the kinetic energy and
the internal energy.

In the case of a static universe possessing a negligible internal energy, one can write

λ = 1 U*  = c02

Let us set λ's  value at 1, giving:

 G = c0
2 

R(t)
M  

This is done to lighten up the equations, but it is not a necessary hypothesis.

NB 1 As M is taken to be time-independent, G  varies like R (if c0  is time-
independent) and therefore increases with time. This is different from Dirac's hypothesis (ref.
23), but only in the special case of a uniform expansion (see page 13).

NB 2 As R(0) = 0, G is null at the beginning of time. Could the absence of
gravitational forces at that instant have encouraged the "big-bang" itself?

Let's come back to equation (2). Substituting  G  by its value  c02 
R
M  and  ρ  by   

M

4/3ðR3    ,

we obtain:

U = 2ð c02 
R
M 

M

4/3ðR3 








R2 - 
r2

3  

                                                                                                                                                  
* At any given time, the differential relation  4πρr2dr = 4πρox2dx   applies
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(3) U = 
3
2  c02 









1 - 
r2

3R2  

Searching for exact solutions to the conservation equations (1)

I will look for particular variable separated solutions (in a spherical geometry) of the
following aspect:

(4) r = x ϕ(t)

solutions first studied by Keller, then by Kidder (ref 20 and ref 21).

Initial conditions and boundary conditions:

Let  t0 the initial time (it doesn't have to be null). We have  ϕ(t0) = 1 , the Lagrangian
coordinate therefore being identical to the Eulerian coordinate.

Additionally:

R = Xϕ(t) X being the initial universe radius

Differentiating (4), we get:

u =∂r/∂t)x= x ϕ'(t)

Universe expansion speed at the boundaries

 u*=∂R/∂t)x= X ϕ'(t)

Closure equation and physical interpretation

At any given moment, the universe is bounded by the presence of the initial photons. We will
take their speed to be c0(t):
:

 u*= c0(t) = Xϕ'(t)

Note:  This yields:
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r
u  = 

ϕ(t)
ϕ'(t)

  = 
R
u*  = 

R(t)
c0(t) 

The gravitational potential can be written (formula (3) page 9):

 U =
3
2  c02 - 

c02

2  
r2

R2  =  
3
2  c02 - 

c02

2  
u2

c02 

U =
3
2  c02  - 

u2

2  

The kinetic energy per mass unit being  1/2u2 , the sum of the potential energy and the kinetic
energy is then:

 U + ec = U + 1/2u2 = 
3
2  c02    therefore time-independent

NB Equation (2), used in deriving the gravitational potential was established rigorously
for a static regime (static masses).

It is easy to show a posteriori that it satisfies in two special cases the generalized
Poisson equation for retarded potentials where the propagation speed of a perturbation
would be proportional to c.

                      ∆U - 
2

2

2

1

t

U

c ∂
∂

= -4ð ρ(t) G

By noticing that the (1 - 
r2

3R2 )  term in equation (3) is time-independent, U is proportional to

c2 ; therefore :   
� 2U

∂ t2
  =0         if  c  is constant or if   c=cst    or     c ∝ t1/2

I can than check, in spherical coordinates , the expression of  ∆U = 
2
r 

�U
�r   + 

� 2U

c2�t 2 =

-  
3c2

R2  = -4ð ρ G    since   G = 
c2R
M   = 

c2R
4ð
3 R3ρ(t)

   = 
3c2

4ðR2ρ
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Solution of system (1)

In monodimensional spherical coordinates, system (1) can be written:





�r
�x  =  

ρ0
ρ 



x

r
2

ρ 
�u
�t  = -

�p
�r  + ρ 

�U
�r

�e i
�t  = 

p

ρ2
� ρ
�t  + T

�S
�t

 

Our hypothesizes say that ρ only depends on t:

(5)     




ρ = ρ0  

1

ϕ3 

 ρ0  
1

ϕ3 x ϕ"(t) = -
�p
�r  - ρ 

c02r

R2

�e i
�t  = 

p

ρ2
� ρ
�t  + T

�S
�t

 

Let us develop the impulsion equation, this time using r as the variable:

�p
�r   = -ρ(t)







ϕϕ" + ϕ'2

ϕ2   r and, by integrating:

 p = K(t) - 
r2

2   ρ(t) F(t) with  F =  






ϕϕ" + ϕ'2

ϕ2                K being the

integration constant

Derivation of K – Closure formula

Let us set an obvious condition:

p=0     for    r=R (zero pressure at the universe's boundaries)

therefore:  K = 
R2

2   ρ(t) F(t)
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 p = 1/2 ρ F [R2 - r2] = ρ 
FR2

2  








1 - 
r2

R2  

finally, knowing that:

�R
�t   = c0(t) = X ϕ'(t) I can say that:   

 p = 1/2 ρ(t) F(t) c02 
ϕ2

ϕ'2
 








 1 - 
u2

c02  

we can rewrite this in the following way if we set:

Ψ(t) = 
ϕϕ"

ϕ'2
  + 1

p = 1/2 ρ(t) Ψ(t) c02 








 1 - 
u2

c02  

In the next pages you can find the solutions for the general case where  ϕ(t)  can take any
shape, assuming that we are in presence of a matter phase ( pm >>pr, em>>er)  or a radiative
phase ( pm<<pr, em<<er).  In practice this will amount to choosing between two different

values of the polytropic γ coefficient.



γ = 5/3 matter phase (monoatomic plasma)
γ = 4/3 radiation phase

 

  
Particular solution ϕϕ = t/t0 . Galilean referentials.

I am now looking for solutions where the universe is expanding at a constant speed. In
these solutions I can therefore attach to galilean referentials to two randomly chosen universe
points.

Let  Ω  be the center of this constant expansion speed universe.
Let A and B be two points of this universe.
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ΩA = r1 = x1 
t
t0

 

ΩB = r2 = x2 
t
t0

 

A
B

Ω

α

expansion
expansion

r1
r2

⇒ It is obvious that AB is a linear function of time. I can then assign a galilean
referential to each point. Therefore:

ϕ(t) = 
t
t0

 ϕ'(t) = 
1
t0

     ϕ"(t) = 0   Ψ(t) = 1

 r = x 
t
t0

 u = 
x
t0

 

 R(t) = X 
t
t0

 c = 
�R
�t   = 

X
t0

  

Newton's constant can be written:

G= 
c02R

M   = 
c03t
M   (6)

G varies linearly with the universal time t

I can state pressure the following way:

 p = 
1
2  c02 ρ(t) 









 1 - 
x2

X2   = 
1
2  c02 ρ(t)  









 1 - 
u2

c02   

with  ρ = ρ0 






t0

t
3
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Local speed of sound

Let   Γ  be the local speed of sound at a given point of the universe.   Γ is the speed with
which a perturbation moves with respect to the expanding medium in which this perturbation
lives:

Γ = 

�p

� ρ x
  =  

c0

2
  1 - 

x2

X2 

Γ =  
c0

2
  1 - 

u2

c02 

At  Γ , x = 0, u = 0, the speed of light is c0 and therefore:

Γ0 =  
c0

2
 

By analogy, we will hypothesize that at a given universe point:

Γ =  
c

2
 

c being the local speed of light ( Lagrange coordinate )

It follows that time-independent c has the following spatial dependence:

 c(x) = Γ =   c0  1 - 
x2

X2   = c0  1 - 
r2

R2 

c = c0  1 - 
u2

c02 

c2 = c02 - u2

c =  c02 - u2 (7)

NB- It wouldn't be wise to use this analogy for mediums with infinite opacity, since sound
propagates in these mediums whereas light doesn't. The considered mediums being almost
totally transparent (at least this would be the case after a certain universal time t), we don't
have to worry about this. On the other hand, this analogy doesn't work in absolute vacuum (a
case I exclude here) since light propagates in that medium whereas sound doesn't.⇒ This a
purely formal analogy.
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Energy equation. Boltzmann's constant k and radiation constant a   

Two cases have to be considered:

1) the so-called "matter" phase (where  pm >> pr  and  em >> er)
The formula  derived for pressure shows that the kT product is time-independent. If k is time
independent, then the temperature would also be time independent, a physically unrealistic

solution. Therefore one must assign a time-dependence to k, which would change as  
1
T .

It follows that:  
�e m
�t   = 

�e i
�t   = 0

It follows form solving the energy equation that:

�S
�t   ˜ 

k(t)
t   ˜ 

 1 
Tt 

2) the so-called "radiation" phase (where  pm << pr and  em << er)

 er = 
aT4

ρ  et pr = 
aT4

3     er = 3 
pr
ρ  

 
pr
ρ   being time-independent, we find: :  

�e r
�t   = 

�e i
�t   = 0

 All the different specific energies:

-gravitational eg = U = 
3
2  c02 - 

u2

2  

-kinetic ec = 1/2 u2

-internal ei  = (γ - 1) 
p
ρ  (matter or radiation)

are time-independent.

For the matter phase γ = 5/3 (monoatomic gas)

and for the radiation phase γ = 4/3  (polytropic  coefficient for radiation in vacuum)

Let's come back to the radiation phase. The  a T4/ρ  term is time-independent. The radiation

constant "a" varies as ρ/Τ4. The temporal variability hypothesis on the "a" constant is not
mandatory. If we assume that "a" is a universal and invariable constant, solving for the energy
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shows us that  T4 varies like ρ. T varies like  t -3/4  and entropy S like  t 3/4  and therefore

like 
1
T    .

⇒ Entropy increases with time and like  
1
T     as expected.

Free energy A and Thermodynamic Potential ΦΦ

We have:  A = er - TS

and Φ = er - TS +  p/ρ

⇒ A and Φ are also time-independent thermodynamical quantities.

Let's go back to the matter phase. If we want to keep this property that was established for the

radiation phase, S must vary as 
1
T    and since   

�S
�t   ˜ 

1
Tt 

T varies as  
1
t    and  k  is proportional to time.

NB Numerical values

If we take t to be 15 109  years (the estimated age of the universe) and T ≈ 2,7°K, we can
check that  pr >> pm and  er >> em by several orders of magnitude because of ρ's  small

numerical value (ρ < 10-29 CGS ). My radiation phase hypothesis is therefore legitimate, at
least for times after a certain time t.

Physical interpretation

I have brought to evidence a uniformly expanding (with respect to the absolute
referential)  universe with a spherical geometry that satisfies, in rational classical mechanics,
the hydrodynamic conservation equations if some hypothesizes regarding the variability of
various basic constants (G, k, a,…) are made.

These solutions correspond to uniform densities, but the pressures, and therefore the
temperatures, are time-dependant as well as a space-dependant. This gives us a space-
dependant sonic speed. By reasoning with an analogy, I  showed that this sonic speed
(longitudinal waves) could be made formally identical to the speed of light (transversal
waves) by the introduction of a numerical constant 2 . All this is done in view of well-
defined theoretical limits.

Speed of light in the absolute referential R

In rational mechanics, velocities add algebraically and the speed of light at a given point m is
written

(8)   ca = u + c02 - u2 if the expansion direction and the light radiation
direction are identical
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(8) another expression:

ca = c0 




u

c0
 + 1 - 

u2

c02   = c0 [ ]µ + 1 - µ2  

with µ =  u/c0 µ ranging from 0 to 1 when moving from the center to the boundary

Variation of ca as a function of µ

 ca is worth c0 in the center, has a maximum 2  c0 when u = c0 2 , then decreases to  c0 for
u = c0  (periphery) ⇒  ca is of the same order of magnitude as  co

Numerical values in the general case

I will limit myself to the case where:

ϕ(t) = 






t

t0

λ
 

we have: Ψ(t) = 
ϕϕ"

ϕ'2
  + 1 = 

2λ - 1
λ   = cste

Time-variation of the main quantities

I assume that the matter internal energy is negligible with respect to the radiation internal
energy (we are in the so-called radiation phase). It is easily shown that:

universe radius R(t) # tλ

speed u(t) # tλ-1

density ρ(t) # t-3λ

pressure p(t) # t-λ-2

temperature T(t) # t
-λ-2

4  

Newton's "constant" G(t) # t3λ-2

internal energy ei(t) # t2λ-2

entropy S(t) # t
9λ
4

  - 
3
2
 

Here is a table that shows the evolution of these quantities as a function of λ.

The cases where λ<
2
3   are physically unacceptable since they would imply a decrease of

entropy with time.
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The λ = 2/3 case is interesting since implies that G and entropy are time-independent.

λ 1/2 2/3 3/4 1   2
R(t) t1/2 t2/3 t3/4 t   t2

c0(t) t-1/2 t-1/3 t-1/4 cst   t

ρ(t) t-3/2 t-2 t-9/4 t-3   t-6

p(t) t-5/2 t-8/3 t-11/4 t-3   t-4

T(t) t-5/8 t-2/3#1/R t-11/8 t-3/4   t-1

G(t) t-1/2 cst t1/4 t   t4

ei(t) t-1 t-2/3#1/R t-1/2 cst   t2

S(t) t-3/8 cst t3/16 t3/4#1/T   t3

Naturally, the quantities  p(t) T(t) ei(t)  and S(t)  are also space-dependant.
I can write the speed of light in Lagrangian coordinates under this form:

 c0(t) 1 - 
u2

c02 where 
u2

c02   is only space-dependant. Therefore I can rewrite this

 c00






t

t0

λ-1
 1 - 

x2

X2  or c00






t

t0

λ-1
 1 - 

r2

R2  

⇒⇒ In the general case, the speed of light is space-dependant (r coordinate in Eulerian
and x coordinate in Lagrangian) and time-dependant.
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 CHAPTER II

TRANSFORMATION OF THE LAWS OF MECHANICS

GRAVITATIONAL ENERGY AND MASS-ENERGY EQUIVALENCE –
SPEED OF LIGHT AND LIMIT SPEED - DOPPLER EFFECT

Introduction

Newton's second law: F = mγγ
implicitly assumes:

1) nonvariability of mass
2) a validity domain for the law in an infinite and empty universe (void of any masses)
I will keep the first condition. But in the light of chapter 1, I can't keep the second. Let us add
a third one
3) the photon has a mass, a function of its frequency as special relativity tells us:

m= h ν/c2 (h: Planck's constant)

This last proposition, independent from any physical theory, comes from experimental data.
This was observed and studied as early as the XVIII century and validated by Eddington's
experiments destined to test general relativity  during the solar eclipse of 1919.

⇒ a photon is deviated by a gravitational field, therefore it has a mass by definition.

⇒⇒ The point of this study is to establish a Newton's law modified by the universe in
which it is applied.

Modification of Newton’ law

Let m be a point test-mass. The force F applied on it can be split up into three components:

f the classical mechanics force that would exist in an infinite and empty
universe.

fa the gravitational attraction force directed towards the center Ω and
caused by the mass of universe between a given point M and Ω.

fr the repulsive or attractive force directed towards the periphery and
caused by the pressure due to the expansion of the universe.
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Valuation of  fa

ΩM = r   (Eulerian coordinate)

The mass of universe between Ω and M is  
4
3 ð ρ(t) r3

By applying Newton's universal attraction law and the
Gauss theorem, we have:

fa = - G (4/3 ð ρ r3) 
3

Ω
ρ
M

m

and according to (6) page 13:

G = c02 R/M

                        G =  
  3c0 

 4ð ρ R2

                    fa = - c02 
1

R2  ΩΩM  m

But we are in a uniformly expanding universe, therefore:

R = c0 t t  being universal time

fa = -
m

t2
  ΩΩM

Valuation of fr

The universe's expansion speed at M is:

u = 
ΩΩM

t  

The test mass m being driven by the forces of the universe's pressure, it can be considered as
being acted upon by a force fr:

fr = m 
du
dt    *

dt

ud
 being the driving acceleration.

                                               
* In the general case where M's trajectory is not a straight line going through Ω , fr is not a central force.

R

Ω

fr

fa

M (m)

r
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fr = m 
dΩΩM/t

dt   = m 






1

t  
dΩΩM

dt  - 
ΩΩM
t2

 

F then takes the form:

F = f - 
m

t2
  ΩΩM + 

m
t  

dΩΜΩΜ
dt   - m 

ΩΩM
t2

 

Special case f = 0

In the absence of any force other than forces caused by the presence of an expanding universe,
we have:

 F = -2 
m

t2
  ΩΜΩΜ + 

m
t  

dΩΜΩΜ
dt  

and by applying Newton's law: F = m 
d2ΩΩM

dt2
  

we get:

d2ΩΜΩΜ
dt2

  - 
1
t  

dΩΩM
dt   + 

2

t2
  ΩΜΩΜ = 0 (2)

In classical rational mechanics, we had a simpler formula:

d2ΩΩM

dt2
  = 0 (2’)

NB: Note the invariance of (2) when t is changed to –t

Introducing an expanding universe into Newton's equation (2') complicates the equation by
adding two extra terms but doesn't fundamentally change the following characteristic:

⇒ Equation (2), like equation (2'), is absolutely independent of the uniformly expanding
universe considered.
The mass of the universe M, its radius R and the speed of light c0 don't affect the equation.
The motion of M depends only on the universal time t and the initial speed and position
conditions.
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First integral – Solution of equation (2)
New notations.

Let us consider the absolute referential
Ra, with cartesian axes :

Ox, Oy, Oz.
At the initial instant t0 , the object's

position is M0 (on Oy) and its absolute speed is  v0

Instantaneous relative speed

At any moment the speed  v = 
dOM

dt    can be considered

as the sum of the driving speed

u = 
OM

t   and an instantaneous relative speed w that

describes M's speed.

(NB- In the general case, during its movement through space M changes galilean referentials
in a continuous manner)

Therefore:

v = 
dM
dt   = u+w= 

OM
t   + w (3)

d2M

dt2
  - 

1
t  

dM
dt   + 

2

t2
  OM = 0 (2)

It is then easily shown that:

 u du + w dw = 0

 u2 + w2 = cst = u02 + w02 (4)

(4) constitutes a first integral of (2)

y

O

z

x

MMo
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NB- Let M1 and M2 be two points of universe. The difference between their gravitational
potentials is:

 U2 - U1 = 
3
2  c02 - 

u22

2   - 
3
2  c02 + 

u12

2   = 
1
2  u12 - 

1
2  u22

and according to (4):  U2 - U1 = 
1
2  w22 - 

1
2  w12

⇒ the potential difference is equal to the kinetic energy variation of a mass M in the local
galilean referentials linked to M1 and M2

Special case of the photon

Let us consider a photon originated from the center of symmetry O. The photon moves with
initial speed c0 by definition. Therefore:

u2 + w2 = 0 + c02

 w2 = c02 - u2 (5) formula established on page 15

 c2 = c02 - u2

Complete solution of equation (2)

First of all note that in the general case, motion is not centrally accelerated because of the 
du
dt  

term.
I will show that M's trajectory is planar. The specific angular momentum k can be written:

k = OM x v

By differentiating :   
dk
dt   = v x v + OM x 

dv
dt    

   = OM x 
dv
dt    = OM x 

v
t   = 

k
t  

The solution of the vector equation:      
dk
dt   - 

k
t   = 0

is:  k = t C C being a constant vector,
which proves the proposition, k being perpendicular to the motion plane.

I can then get rid of the 3rd coordinate z. The trajectory is completely described by separating
equation (2) on the Ox and Oy axes:
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



d2x

dt2
 - 

1
t  

dx
dt  + 

2

t2
 x = 0 

d2y

dt2
 - 

1
t  

dy
dt + 

2

t2
 y = 0 

 (2’)

The exact solutions of theses two equations are:



x = t 







A cos







Log

t
t0

 + B sin






Log

t
t0

y = t 






C cos







Log

t
t0

 + D sin






Log

t
t0

 

A, B, C, D being constants depending on the initial conditions.

To simplify the equation, let me set:

ϕ = Log
t
t0

    or t = t0 eϕ  dϕ = 
dt
t



x = t0 eϕ ( A cosϕ + B sinϕ)

y = t0 eϕ ( C cosϕ + D sinϕ)
 

Trajectory

By setting: X = 
x
t   Y = 

y
t  , 

we get



X = A cosϕ + B sinϕ 
Y = C cosϕ + D sinϕ  

In the moving referential OX, OY linked to the expansion of the universe and determined by
the point of universe M’0 identical to M0 at time t0, the trajectory is an ellipse centered in O
(O is NOT the focus of the ellipse).
In the absolute referential Ox, Oy this trajectory looks like a kind of elliptic spiral.
Furthermore, in the moving referential OX, OY, the motion is periodical (period T):

 T = t0 (e2ð -1)

O

y

Mo'
Mo

uo
vo

u

v

(to)

x

M
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Special cases

1) Circular trajectory
In the moving referential OX, OY, the trajectories are circles if and only if:

 wo ⊥⊥ uo          and      |wo| = |uo|

2) Rectilinear trajectory

  Such trajectories are exceptional. In general, trajectories are curved and in a certain
way the universe is curved. However if  wo is collinear to u0, the trajectory is rectilinear. The
equation of motion comes down to:

y = t [ u0cosϕ + w0sinϕ ]

It is easily shown that M stays inside the sphere of universe
whose radius is:

OA = R0 = c0 t if and
only if:

w0 = c02 - u02  

The case where w0 = c02 - u02  corresponds to the photon. The photon's speed, or
speed of light, then appears as a "limit" speed, null at the boundary (u0=c0).

Beyond that limit M could be outside of the universe sphere which, by definition, is
impossible.

From a certain point of view, we can consider the speed of light in vacuum to be a
universal constant, but this is never physically achieved since at any point of space one can
define a nonzero mass density, which I take to be uniform in my hypothesizes.

Physically, one could suppose that the universe radius  R0 = c0t  is determined by the
initial photons emitted during the "big-bang".

And I have just proved that any other photon emission occurring at any other time at
any point of space doesn't question this physical limit R0.

Note: In the case of a photon emitted at A such as  OA = c0t (universe radius)
and  w0 = 0, the equation of motion is:

   y = c0 t cos






Log

t
t0

 

This photon, although being emitted with zero relative speed, moves along the Oy
axis. The time taken to reach O is:

O

M
A

w

u

OA=cot  
     =Ro

y

o

o

Mo
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 t1 = t0 eð/2

Doppler effect

To simplify the calculations, I will stick to the following special case:

* longitudinal Doppler effect (monodimensional setup)
* fixed observation point, necessarily O itself.

O                Mo     uo         M'o     
x

to

The mobile Mo is a point of universe moving with speed  u0  on the Ox axis and emitting light
signals of period T.
At time t0, Mo emits a light signal towards O which, according to what I wrote above, moves

with the following relative speed at Mo:  w0 = c02 - u02    . Its absolute speed v0 is:

v0 = u0 - c02 - u02 

The photon's equation of motion is:

 x = t [ u0 cos Log
t
t0

  - wo sin Log
t
t0

  ]

The photon reaches O at time  t1 such as:

ϕ = Log
t
t0

      tgϕ1 = 
u0
w0

    ou sinϕ1 = 
u0
c0

 

At time  t'o = to + T  the mobile is located at M'o and emits a second signal. This second
photon is described by the following formula:

ϕ' = Log
t

t'0
 

 x = t [u0 cosϕ' - w0 sinϕ']

It reaches O at time  t'1 = t1 + T'   such as: sinϕ'1 = 
u0
c0

  = sinϕ1
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therefore: ϕ1' = ϕ1      and so :    Log
t1 + T'

t'0
  = Log

t1
t0

 

t1 + T'
t0 + T  = 

t1
t0

  = 
T'
T 

T', the period of a light signal received in O and emitted by a mobile moving with constant
speed  u0 (and emitting a light signal with period T) is:

T' = T eArc sin u0/c0

Comparison with the "classical" and relativistic (special relativity) Doppler formula

In the case of the longitudinal Doppler effect, I set: y = 
T'
T and  x = 

u0
c0

  

The observer is assumed to stand still at O and the source S is moving away from O at a
constant speed u0 :

1) Classical theory:  y1 = 1 + x

2) Special relativity:  y2 = 
1 + x
1 - x  

3) Present theory:  y3 = eArc sinx

By expanding  y2  and  y3  to the third order, we get:

y2 = 1 + x + 
x2

2   + 
x3

2  

y3 = 1 + x +  
x2

2   + 
x3

3  

At the first order, all models are equivalent.
At the second order, models 2 and 3 are equivalent.
At the third order, models 2 and 3 are very close (a 0.5 factor versus a 0.33 factor for the x3

term)

If we rigorously establish numerical values for the three functions with x taking different
values, including x = 1, we can draw the following table:
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x 0 0,01 0,1 0,3 0,6 0,9 0,99 1

y1 1 1,01 1,10 1,30 1,6 1,9 1,99 2
y2 1 1,01 1,105 1,36 2,0 4,36 14,1 infinite
y3 1 1,01 1,105 1,356 1,9 3,06 4,17 4,81

We can notice that except for values of x close to 1, my model gives results very close to
those of special relativity. It is also important to notice that, contrarily to special relativity, y3
stays finite for x = 1

There is no light cone in this case: any point of the universe is virtually observable from
any other point of the universe.
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CHAPTER III

COSMOPHYSICS

MAXWELL'S EQUATIONS AND UNIVERSAL TIME

Reminders and Objectives

In the preceding chapters we derived the equations that describe mechanical phenomenon on
the cosmological scale, with an absolute space using Cartesian coordinates and whose center
is located at the singular point of the "big-bang", a universal time starting with the "big-bang"
and a nonvoid universe where the speed of light is spatially-dependant.
These equations are difficult to use on a local scale. This is essentially due to the
inhomogeneous nature of the universe, notably the presence of a center of spherical
symmetry.
I will now try to define a new kind of physics that can be used in an "ideal" universe, meaning
that it is perfectly homogeneous, isotropic and empty (no mass present).
I will limit myself to the case this universe is uniformly expanding, which allows me to
introduce galilean referentials in a natural way.

I showed that Newton's constant G could be written the following way:

 G = c2 
R
M 

c being the speed of light at the center and the expansion speed at the boundary of the
universe (this speed was written c0  in chapters I and II).

 R = c t universe radius

Note that in a rigorously empty universe the speed of light would effectively be a universal
constant (special relativity).

Real mass and apparent mass

By reasoning with the example of the photon described in chapter I, we saw that its intrinsic
speed, meaning the speed at which it moves with respect to the fluid in which it propagates,

varies from c in the center to  c2 - u2 , u  being the expansion speed of the universe point
considered.

NB: To simplify things we shall suppose the propagation to be rectilinear, along an axis
going through the origin (Ox for example).

I want to conserve Newton's second law in the absence of any outside force:
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 F = 0 = 
dmv
dt  

Here,   
dmv
dt   = 0 mv = constant

We have to let mass vary as a function of speed. Let mo be the mass at the center (not the rest
mass) and the mass at a given universe point.

We have:

 mo c = m c2 - u2 

therefore:       m = 
mo c

c2 - u2
 

or:       m = 
mo

1 - u2/c2
 

This is the well-known special relativity formula, which was first established experimentally
by Kaufmann's work on electrons in the very beginning of the 20th century.

Defining a new metrics

Let's go back to our ideal empty universe. We must conserve mass variation and momentum.
Let me consider the following transformation:

x = 
c2 - u2

c   x' + u t

y = y'
z = z'
t = t' (universal time)

for two galilean systems (S) and (S') going through rectilinear and uniform translation with
respect to each other (Ox axis).

This transformation is halfway between Galileo's and Lorentz's. Note that if time is conserved
by definition, lengths are not.
Contraction of distances in (S') as seen from (S) is the same as in special relativity.
By setting:

 v = 
dx
dt  v' = 

dx'
dt  we get:

 v =  
c2 - u2

c   v' + u (3)
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For a photon v = c and v' = c', therefore:

 c'= c (c-u)/(c+u) 

Force Transformation

 

y

(S)

y'

(S')

O O'

x'

x

u

M

I will limit my use of transformations to the special case where the considered material point
M is at rest in (S') at time t.

We have: F = 
dmv
dt  F' = 

dm'v'
dt  

with: m = 
mo

1 - 
v2

c2

 m' = 
m'o

1 - 
v'2

c'2

 

and:  m'o = 

2

2

0

c
u

1

m

−

c being the speed of light in (S) and c' the speed of light in (S').

By developing:

 F = m 
dv
dt   + v 

dm
dt  and projecting on the axes:

 Fx  = 
mo

1 - 
v2

c2

 
dvx
dt   + vx mo 

v

c2 
dv
dt  









1 - 
v2

c2   
-3/2
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

vx = 

c2 - u2

c  v'x + u

vy = v'y
vz = v'z

 

at time t:  vx = u = v

by setting: γx = 
dvx
dt  and α = 1-u2/c2           we get:

  Fx  = mo 
γx

α3 

Likewise:

 F'x  = 
m'o

1 - 
v'2

c'2

   
dv'x
dt   + v'x 

dm'
dt   

but: v' = v'x = 0 at time t

therefore: F'x = m'o
dv'x
dt   = m'o γ'x

but:  vx = α v'x + u brings on:

γx = α γx'

Fx' = m'o 
γx
α   = 

mo

α2  γx

===> F'x = αα Fx

Likewise:

 Fy  = 
mo

1 - 
v2

c2

 
dvy
dt   + vy 

dm
dt   

but at time t, v' = 0  v = vx = u and  vy = 0
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 Fy = 
mo
α   γy

F'y  = 
m'o

1 - 
v'2

c'2

dv'y
dt   + v'x 

dm'
dt    =  m'o γy

F'y = 
mo
α   γy ===> F'y = Fy

and using an analogous proof:

===> F'z  = Fz

Important Note:

I am trying to prove that the introduction of a relative time is in no way mandatory. Of course
the option chosen in special relativity where the speed of light is taken as a universal constant
is a valid option.
I will now derive Maxwell's equations and prove their invariance with respect to a change in
galilean referentials.

APPLICATION TO ELECTROMAGNETICS: MAXWELL'S EQUATIONS

I will apply transformation (T) to electromagnetics with the following classical hypothesizes:

1) Charge distribution fixed with respect to (S').

2) Validity of the Lorentz force law for an electric charge at rest in (S').

F = q ( E + u x B ) E: electric field
B: magnetic field

3) Invariance of electric charge q.

4) Validity of the laws of electrostatics and magnetostatics in (S').

divB’= 0 rot B'= 0

divE'=ρ'/k
,
e rot E'= 0
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ρ' is the electric density in (S') and  k
,
e   is the electric permittivity in (S') a priori different of

the permittivity  ke in (S)

I will show that with these assumptions made, Maxwell's equations are verified in (S). The
derivation process used will be identical to that of special relativity.

Furthermore considerations on the cosmological and mechanical order (see preceding pages)
will allow me to prove that the components of the force transform in the following way:



F

,
x=αFx

F
,
y= Fy

F
,
z= Fz

 

3. Maxwell's equations. Proof

Transformation of the electric field

From Lorentz's formula, we get:

(3)








+=
−=

=

yzz

zyy

xx

uÂÅ'Å

Âu Å'Å

Å'Å

Transformation of the magnetic field

Let me apply the following transformation: (cf. the Biot-Savart law and the corresponding
special relativity transformation)

(4)





B'x = λBx

B'y = 
λ
α








By + 
u

c2 Ez

B'z = 
λ
α








Bz - 
u

c2 Ey

 where λ  is an arbitrary constant

 A shall be any vector . The formulas for transforming the coordinates :



x = α x' + u t
y = y'
z = z'
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allow us to evaluate the overall differential dA , to set the following relationships :

∂A
∂x'

 = α 
∂A
∂x

∂A
∂y'

 = 
∂A
∂y

 
∂A
∂z'

 = 
∂A
∂z

et :


∂A

∂t S'
 =  



∂A

∂t S
  + u 

∂A
∂x

The charge distribution is fixed in (S'). The fields are therefore static and I can write:


� A

�t S'
  = 0 where A can be E or B

3.1 Gauss's theorem applied to the magnetic field

)div B'
S'

  = 0
�B' x
�x'   + 

�B' y
�y'   + 

�B' z
�z'   = 0

therefore:
�E z
�y   - 

�E y
�z   = - 

�B x
�t  







1 - α2

u2   c2 - 
c2

u   div B

knowing that α2 = 1 - 
u2

c2  :

(5)     
�E z
�y    -  

�E y
�z    = - 

�B x
�t   - c2 divB

u
 

Furthermore rot E' = 0 (by assumption) brings:

�E' z
�E' y

   – 
�E' y
�z'   = 0 and , substituting:

(5’)
�E z
�y    – 

�E y
�z    = - u(divB - 

�B x
�x   ) = - 

�B
�t   - u divB

By comparing (5) and (5'), we get:

- c2 
divB

u    = - u divB and, u being different from c:

div B = 0 [Gauss's theorem in (S)]

knowing this and according to (5):
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(6')
�E z
�y     –  

�E y
�z   = – 

�B x
�t  

Likewise
�E' x
�z'    – 

�E' z
�x'   = 0 brings

(6'')
�E x
�z   – 

�E z
�x   = – 

�B y
�t  

In the same manner, we get:

(6''')
�E y
�x   – 

�E x
�y   = – 

�B z
�t  from where:

(6)           rot E = – 
� B
�t  [Maxwell-Faraday equation in (S)]

3.2 Gauss's theorem applied to the electric field

)div E'
S'

  = 
ρ'
k'e

 

Conservation of charge implies:
q = ρ dx dy dz = ρ' dx' dy' dz'

⇒ ρ' = α ρ

)div E'
S'

  = 
ρ'
k'e

  = α )div E'
S'

  = 
ρ'
k'e

  = α 
ρ

k'e
 = 

�E' x
�x'  + 

�E' y
�y'  + 

�E' z
�z'          therefore:

�E x
�x   (α2 - 1)  + div E - u 







�B z

�y  - 
�B y
�z   =   α 

ρ
k'e

 

or:


�E' x

�t S'
 =    0     =



�E x

�t S'
  =  



�E x

�t S
  + u 

�E x
�x  

implies:
�E x
�t  

(1 - α2) 

u   + div E - u 






�B z

�y  - 
�B y
�z   =   α 

ρ
k'e

        or :

(7)
�B z
�y   - 

�B y
�z   = 

1

c2 
�E x
�t    + 

divE
u   – 

αρ
uk'e

 

Furthermore rot B' = 0 by assumption. Therefore:
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'y

'B z

∂
∂

 –  
�B' y
�z'   = 0 and, by substitution:

(7')
�B z
�y   – 

�B y
�z   = 

1

c2 
�E x
�t   + 

udivE

c2  

By comparing (7) and (7'), we get:

div E [ 1 – 
u2

c2  ] = 
αρ
k'e

 or div E = 
ρ

αk'e
 

The Gauss theorem applied to the electric field is conserved in (S) if:

ke
k'e

  = α = 1 - 
u2

c2     and we can write:

div E = 
ρ
ke

 [Gauss's theorem in (S)]

You can then note that the electric permittivities are different in (S) and (S').

It then follows that:

– 
�B y
�z   = 

1

c2 
�E y
�t   + 

uρ
kec2  

�B z
�y   

(8')
�B z
�y   – 

�B y
�z   = kmρu + 

1

c2
�E y
�t  

Likewise:
�B' x
�z'   – 

�B' z
�x'   = 0 and         

�B' y
�x'   – 

�B' x
�y'   = 0 implies:

(8'')
�B x
�z   – 

�B z
�x   = 

1

c2 
�E y
�t  and:

(8''')
�B y
�x   – 

�B x
�y   = 

1

c2 
�E z
�t  and since  j = ρ u :

(8)
1

km
  rot B = j + ke 

� E
�t  [Maxwell-Ampere equation in (S)]
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Speed of light and electromagnetic constants in the reference systems (S) and (S')

I have proved that:

c' = c
c - u
c + u 

but: k'e k'm c'2 = 1 and k'e = 
ke

1 - 
u2

c2

  = 
c ke

c2 - u2
 

or:
c ke

c2 - u2
   k'm  c2 

c - u
c + u  = 1

k'm = km 
( )c + u

3/2

c c - u
  = km 

c + u
c'  

Magnetic permeabilities are different in (S) and (S').

I have just showed that transformation (T):



x = 1 - 

u2

c2 x' + u t

y = y'
z = z'

 

conserves the form of Maxwell's equations in the case where the charges are static with
respect to one of the galilean referentials. Here (S') is the preferred referential.
I have derived the electric field transformation rules:



E'x = α Ex
E'y = Ey - u Bz
E'z = Ez + u By

 

For the time being, I have accepted (without proof)  the magnetic field transformation rules,
formally identical to those of special relativity:





B'x = λBx

B'y = 
λ
α








By + 
u

 c2 Ez

B'z = 
λ
α








Bz - 
u

 c2 Ey
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The speed of light, the magnetic permeability and the electric permittivity all depend on the
considered referential.

Note that Galileo's relativity principle does not apply.

Preferred referential. Physical interpretation of transformation (T)

In referential (S'), the charges are static. (S') is the preferred referential. For any other
referential, these charges are undergoing rectilinear and uniform motion.

Let us consider a length of coordinates  (x1, x2)S  and  (x'1, x'2)S'  at time t.

The equations for (T) imply:

x1 = 1 - 
u2

c2  x'1 + u t

x2 = 1 - 
u2

c2  x'2 + u t

   x'2 - x'1 = (x2 - x1) 
c

c2 - u2
     therefore :  x'2 - x'1  >  x2 - x1

When looked at from the preferred referential (S') where charge is static, distances are dilated.
(S') can then be considered as an absolute referential: this dilatation of distances can be
considered as the physical expression of the expansion of the universe, hypothesis I will take
to be true.

Generalization to ordinary galilean referentials.

Notation change

Let (S) and (S') be two ordinary galilean referentials and let us suppose the existence of a
preferred galilean referential (S'') where electric charge is "at rest".
(S) and (S') are moving with speed u and u' with respect to (S'')
u and u' are collinear to the Ox axis
With no new calculations, it can be proved that Maxwell's equations are conserved in (S) and
(S').
You just need to apply the preceding theory to (S) and (S''), then to (S') and (S'').
Maxwell's equations being invariant in (S) and (S'') [both the magnetic field and the electric
field are static in (S'')] and in (S') and (S''), they are therefore invariant in (S) and (S').

I wrote down the complete transformation formulas.
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(T) 


x = αx" + u t
y = y"
z = z"

      α = 1 - 
u2

c2       c :  speed of light in (S)

(T') 


x' = α'x" + u't

y' = y"
z' = z"

 α'= 1 - 
u'2

c'2
  c’ :  speed of light in  (S’)

Electric field



E'x = α Ex = α'E'x
E'y = Ey - uBz= E'y - u'B'z
E"z = Ez + uBy = E'z + u'B'y

 

Magnetic field





B"x =λBx = λ'B'x

B"y = 
λ
α








By + 
u

c2 Ez  = 
λ'
α'








B'y + 
u'

c'2
 E'z

B"z = 
λ
α








Bz - 
u

c2 Ey   = 
λ'
α'








B'z - 
u'

c'2
 E'y

 

Transformations (T) and (T') imply:

 x = 
α
α'

  x' + 








u - 
α
α'

 u'   t under the form:



x = ax' + wt
y = y'
z = z'

 with: a = 
α
α'

              w = u - 
α
α'

  u'

w is the relative speed of (S) with respect to (S'), different from the relative galilean speed
(u – u').

Differentiation formulas

Let A be a  field vector (electric or magnetic).

We have:

� A

�t S"
 = 0 =   


� A

�t S
  + u

� A
�x    =   


� A

�t S'
  + u'

� A
�x'  
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� A
�x'   = a 

� A
�x  and 


� A

�t S'
 =  


� A

�t S
  + w

� A
�x  

Speeds



vx = 

dx
dt  = a 

dx'
dt  + w = av'x + w

vy = v'y
vz = v'z

 

Speeds of light

 c = ac' + w and by substituting:

c 
c - u
c + u  = c' 

c' - u'
c' + u'  = c" speed of light in (S'')

⇒ Note that Galileo's relativity principle applies to (S) and (S'):

(S) ⇒ (S') (S') ⇒ (S)

x ⇒ x'    α ⇒ α' u ⇒ u'

We get:

 x' = 
α
α'

  x + 








u' - 
α'
α  u   t from where:  x =  

α
α'

  x' + 








u - 
α
α'

 u'   t

The same goes for electric and magnetic fields.

Electric permittivity

ke = k"eα               k'e = k"eα'

ke = 
α
α'

  k'e = ak'e = 
c'
c  

c2 - u2

c'2 - u'2
   k'e

Magnetic permeability

The formulas  ke km c2 = 1 and  k'e k'm c'2 = 1 imply:

 km =  
c'
c  

c'2 - u'2

 c2 - u2   k'm
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Derivation of λλ and λλ'. Alternative form of the magnetic and electric field
transformation formulas.

In special relativity, it is easily shown that:

(9)  E2/c2 - B2 = E'2/c2 - B'2

(10)  E.B = E'.B'

We can try to keep the same kind of formulas. Equation (9) can be written:

 D2 / k
2
e c2 - k

2
m H2  = D'2/ k

2
e c2 - k

2
m H'2

H and H' being the auxiliary fields and D and D' being the electrical displacements in (S) and
(S').

By using  kmkec2 =1, we get:

 D2 -H2/c2 = D'2 - H'2/c2

With transformation (T), we would get:

(9’) D2 - H2/c2 = D'2 - H'2/c'2

Likewise, for equation (10):

 D/ke kmH = D'/ke kmH'         or  D.H/c = D'.H'/c

With transformation (T), we would get:

(10') D.H/c = D'.H'/c'

I will try to derive λ and λ' to satisfy equations (9') and (10'). After calculations, we get:

λ /λ'= c/c' ke /k'e = c'/c k'm/km

(λ and λ' are only present through their ratio)

Here are the transformation formulas for the auxiliary field and the electrical displacement:
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(11)


D'x = Dx

D'y = 1/α  (Dy - u/c Hz)

D'z = 1/α  (Dz + u/c Hy)
 

(12)


H'x /c' = Hx /c
H'y /c' = 1/αc (Hy + u Dz)
H'z /c' = 1/αc (Hz - u Dy)

 

These only apply in the case where charge is at rest in (S').

In the general case where (S) and (S') are two ordinary referentials, the transformation

formulas written under the form of page 35, as functions of u, u', α, α', with  α2=1 - u2/c2

and  α'2=1 - u'2/c'2 get pretty complicated. On the other hand, one can prove that these
formulas can be written as functions of c and c' exclusively. These are the following
equations:

     (13)    



D'x  = Dx

D'y  = k1 Dy – k2 
Hz
c

D'z  = k1 Dz + k2 
Hy
c

  

     (14)    





H'x
c'  = 

Hx
c

H'y
c'  = k1 

Hy
c  + k2 Dz

H'z
c'  = k1 

Hz
c  – k2 Dy

 

with :  k1 = 1/2(c/c'+ c'/c)

k2 = 1/2(c/c'- c'/c)

These equations are perfectly symmetrical. You can easily check that Galileo's relativity
principle applies.
Starting with (13) and changing (S) into (S') and (S') into (S):

        Dx = D'x

        Dy = k1 D'y + k2 
H'z
 c'  

        Dz = k1 D'z  -  k2 
H'y
 c'  
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and, according to (13), (14) can be re-derived for the H'y/c' component and the  H'z/c'
component. Furthermore, we can prove that  H'x/c' = Hx/c  is necessarily true : if , in H'x/c'
expression, there were other components than Hx/c, inversely, in the expression of one of
these components, Dy  for instance, we should find  H'x/c' ; however, it is not present.
Therefore  H'x/c' depends only on  Hx/c and is equal to it by reciprocity .

In conclusion Equation (14) was derived from equation (13).

By setting  h = 
H
c    (which has the same dimension as D), Maxwell's equations can be written:

 div h = 0            div D = ρ

 rot D = – 
 � h
c�t  rot h = 

j
c  + 

 � D
c�t  

As a reminder, here is the equation that links c to c' in the special case electromagnetic waves
propagating along the Ox axis:

c
c - u
c + u  = c'

c' - u'
c' + u' 
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APPENDIX

This new theory, based on the existence of an absolute referential linked to the
Universe itself, is not in contradiction with the criticism on relativity emitted by Léon
Brillouin (ref 5 and 6) and in particular with the fact that a reference system must have an
infinite mass. Furthermore, the hypothesis that permits the variability of the speed of light
seems in accordance with the measurements done by Miller and Maurice Allais (ref 25).

Let's not forget that this new theory  is only an "approximation"(similarly to relativity)
of physical reality since I got rid of the "real" universe's anisotropy, with its singular point.

To conclude, I would like to make a last remark: the center of the Universe, whose
existence is inherent to this theory, can makes us think of the "Great Attractor" discovered a
few years ago (ref 24).
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ADDENDUM

INTERPRETATION OF LIFETIME MEASUREMENTS ON
"RELATIVISTIC" OR "ULTRARELATIVISTIC" PARTICLES

The relativity of time would be "proved" during lifetime measurements done on some
particles (muons, pions, etc) produced and maybe accelerated to speeds close to the speed of
light by the most powerful accelerators, like the CERN.
Without going into details, the following train of thought can be adopted in "special
relativity":
u, the speed of the considered particles, is determined experimentally. u being very close to
the speed of light, one can write:

β = u / c = 1 – ε     with  ε << 1

If we call ∆t' the lifetime of the particle in its own referential and ∆t its lifetime in the
laboratory's referential, special relativity gives us the following formula:

∆t = ∆t'/ 1- β2 

Numerical example:
with β = 0.99875
we find ∆t = 20 ∆t',   in agreement with experimental results

Cosmophysical interpretation of these results.

First of all, note that:

1) In theory the calculation of the particle's speed must be done and it is effectively done in
special relativity. Then the calculation of its energy and lifetime can be done.

In different terms, the theoretical ∆t was evaluated using relativistic formulas.

Let's just suppose for the moment that the value of this theoretical ∆t is independent of any
theory, relativistic or not.

2) In reality during this type of experiment, ∆t is not directly measured: the total distance
traveled by the particle is measured.

Let x be this distance in the lab's frame. We have:
∆x = u ∆t = c (1 – ε) ∆t # c ∆t

c being independent from the considered referential, one should find , in the particle's
referential, a distance ∆x' such as:

∆x' = c ∆t'
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We have: ∆x/∆x' = ∆t/∆t' = 1/ 1- ß2 

On the other hand in cosmophysics if lifetimes are identical, the speeds of light are different:

We have:

 c = c'  c+u / c-u  = c'  1+ß /  1-ß 

and: ∆x* = c ∆t  ∆x'* = c' ∆t

∆x*/∆x'* = c/c' =  1+ß / 1-ß  = 1+ß/= (1+ß) ∆x/∆x’ ≈ 2∆x/∆x’

β2

This important result follows:

⇒ In cosmophysics, the calculated length is twice the length calculated in relativity.
The order of magnitude is correct. The 2 factor must be explained, but remember I supposed
the ∆t theorical to be identical in both theories and this is not proved to be true. 


